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Abstract
One more derivation of the quantum probability rule is presented in order to
shed more light on the versatile aspects of this fundamental law. It is shown
that the change of state in minimal quantum non-demolition measurement,
also known as ideal measurement, implies the probability law in a simple
way. Namely, the very requirement of minimal change of state, put in proper
mathematical form, gives the well-known Lüders formula, which contains the
probability rule.

PACS numbers: 03.65.Ta, 03.65.Ca

1. Introduction

The quantum probability law tr(Eρ) (its so-called trace-rule form) is one of the fundamental
pillars of modern physics along with Einstein’s famous energy formula E = mc2 and
Boltzmann’s immortal entropy expression S = k logW. Gleason gave a seminal derivation
of the quantum probability law in his theorem [1]. Nevertheless, as to transparency, there
is much to be desired. Though the quantum probability law looks simple, there are ‘wheels
within wheels’ in it. Therefore, it is important to view it from as many different angles as
possible to be able to comprehend the intricacies involved in it.

A number of alternative derivations appeared in the literature. Let me mention just a few.

(i) The approaches based on the so-called eigenvalue–eigenstate link [2–4].
(ii) The decision-theoretic approaches [5–8].

(iii) Derivation from operational assumptions [9].
(iv) The approach via entanglement.

The last mentioned approach went under the title ‘Born’s rule from envariance’
(environment assisted invariance). There were four articles by Zurek [10–13], who invented
the approach, and there were four more articles by commentators [14–17], and finally my own
contribution in terms of a complete theory of twin unitaries (the other face of envariance) [18].
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The first eight articles had two restrictions in establishing essentially the trace rule tr(Eρ) for
probability, where E was an event (projector) and ρ was the subsystem density operator: they
handled only improper mixtures [19], and did not go beyond the commutation [E, ρ] = 0
restriction.

My paper emphasized the role of σ -additivity in the derivations from entanglement (the
sole assumption in Gleason’s theorem). I suggested to surmount the commutation restriction
by taking resort to minimal quantum non-demolition (QND) measurement.

Subsequently, I have realized that minimal measurement is by itself sufficient to derive
the entire trace rule. It has the advantage that it does not require the σ -additivity assumption,
and thus it is complementary to Gleason’s theorem [1]. This paper is devoted to the exposition
of the minimal-measurement approach.

The paper is based on the idea that probabilities are predictions for the statistical weights
of definite-result sub-ensembles in measurement. These are, in the end, detected as relative
frequencies.

2. Assumptions of the derivation

We are dealing with an arbitrary observable A that has a purely discrete spectrum {an : ∀ n}.
We write it in spectral form

A =
∑

n

anPn, n �= n′ ⇒ an �= an′ . (1)

It will be fixed throughout. We have in mind QND measurement of the observable A.

2.1. The assumptions

The assumptions of the approach read as follows.
(i) States are described by density operators ρ.

By ‘state’ we mean an ensemble of quantum systems prepared by a certain procedure.
Any measurement converts the initial state ρ into a final state ρ ′ (in the so-called non-selective
version, when the entire ensemble is considered). The latter is decomposable into states ρ ′

n

that correspond to the different results an of A :

ρ ′ =
∑

n

wnρ
′
n; ∀ n : wn � 0,

∑

n

wn = 1. (2)

If the measurement is not a QND one, then the states {ρ ′
n: ∀ n,wn > 0} need not be

in any simple relation to A. They correspond to definite pointer positions on the measuring
instrument (which we make no use of in this approach). The statistical weights wn apply both
to the states ρ ′

n of the selective version (in which definite results are considered) and to the
corresponding pointer positions. By the very definition of measurement, the weights equal the
probabilities:

∀ n: wn = p(an,A, ρ) (3)

(in obvious notation). In other words, as it was stated in section 1, the probabilities p(an,A, ρ)

are understood to be the predictions for the statistical weights wn, which become relative
frequencies when the measurement is performed on the individual systems that make up the
ensemble.QND measurement, by definition, converts an initial state ρ into a final state ρ ′,
which has two properties.

(a) The states ρ ′
n that determine the terms in decomposition (2) are dispersion-free with

respect to the observable A:

∀ n, wn > 0: p(an,A, ρ ′
n) = 1. (4)
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(b) If the initial state ρ is itself dispersion-free with respect to A : ∃n : p(an,A, ρ) = 1,

then so is the final state, and the sharp value of A is the same: ρ ′ = ρ ′
n, but, in general, the

initial and the final states need not be equal. (Earlier used synonyms for ‘non-demolition’
were ‘repeatable’, ‘predictive’, ‘first-kind’, etc.)

(ii) Further, we assume that if and only if a state ρ satisfies

tr(Pnρ) = 1, (5a)

then the probability p(an,A, ρ) of the value an of the observable A in this state is 1. In other
words, we assume the validity of the trace rule for probability-one events.

It is proved in appendix A that (5a) is (mathematically) equivalent to

PnρPn = ρ. (5b)

Let us denote by ρ ′′
n any state that has the sharp value an of A : p(an,A, ρ ′′

n) = 1, and let us
consider the family of all mixtures

ρ ′′ ≡
∑

n

vnρ
′′
n; ∀ n : vn � 0;

∑

n

vn = 1. (6)

An immediate consequence of (5b) is that decomposition (6) can be rewritten as

ρ ′′ =
∑

n

vnPnρ
′′
nPn,

which, on account of the orthogonality and idempotency of the eigen-projectors PnPn′ =
δn,n′Pn, implies

ρ ′′ =
∑

n

Pnρ
′′Pn. (7)

Since (7) is obviously sufficient for (6), also (7) characterizes states that are mixtures of states
with definite values of A.

If an initial state ρ and an observable (1) are given, then a subset of the family of states
(7) are final states of QND measurements.

Our next-to-last assumption is as follows.
(iii) The state ρ̄ ′′ in the family of states (7) that is closest to the initial state ρ is the final

state of a QND measurement of the observable A. By this, ‘closest’ is meant in the sense of
minimal distance, where distance is taken in the Hilbert space HHS of all Hilbert–Schmidt
(HS) operators (cf [20] and appendix B below). All density operators are HS operators.

In general, also in a proper subset of HHS, in the set of all trace-class operators, for which
by definition trρ < ∞, distance is mathematically defined. We take distance in HHS due to
lemma C in appendix C.

Our last assumption is as follows.
(iv) The probabilities p(an,A, ρ) are the same in all measurements of A in ρ.

2.2. Discussion of the assumptions

Assumptions (i) and (iv) have a basic (almost axiomatic) position in the conceptual structure
of quantum mechanics.

Assumption (ii) stipulates the trace law for events that are certain. Here we are on similar
grounds as Zurek was [10–13], when he set out to derive Born’s rule assuming its validity for
events that are certain. (In [18] though, when the full power of envariance was made use of,
the trace law under the restriction [E, ρ] = 0 was derived with no probability-law assumption
to start with.)
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Assumption (iii) can be viewed as the definition of minimal (or minimal-disturbance)
QND measurement. Namely, ‘closest’ can be understood as ‘minimally changed’.

In the next section we derive ρ̄ ′′, and thus we obtain the probabilities.

3. Derivation of the trace rule

We adapt now a former derivation [21] of the Lüders formula [22] to the present purpose.
The argument is very simple. It is based on three almost evident remarks:

Remark 1. The super-operator P̂A ≡ ∑
n Pn . . . Pn (cf (1)) is a projector in HHS. (The dots

show the place where any HS operator B ∈ HHS should be in the sum of products when P̂A

is applied to it.) One easily shows the claimed Hermiticity and idempotency of P̂A in HHS (cf
appendix B).

Let us denote by SA the subspace of HHS onto which P̂A projects.

Remark 2. As it is obvious from (7), each density operator ρ ′′ from the family (6) (or (7)) is
an element of SA. And conversely, the family (6) consists of all density operators that are in
SA.

Remark 3. If ρ is a density operator, then so is its projection P̂A(ρ) (as easily seen).

If ρ is an arbitrary initial state, its closest element in SA is its projection into SA (cf appendix
D). The projection is a density operator on account of remark 3. The projection belongs to the
family (6) owing to remark 2. Relation (3) implies that the weights in the projection give the
probabilities.

Finally, let us write down the projection.

P̂A(ρ) =
∑

n

PnρPn.

This is the well-known formula of Lüders, which gives the change of state in minimal QND
measurement (also called ideal measurement) [22].

Making the weights in the preceding relation explicit, one obtains

P̂A(ρ) =
∑

n

(tr(Pnρ))(PnρPn/[tr(Pnρ)]). (8)

Relations (3) and (8) give our final result:

∀ ρ, ∀ n : p(an,A, ρ) = tr(Pnρ). (9)

In this way the trace-rule form of the quantum probability law is derived.
Incidentally, if the event is elementary (mathematically, a ray projector) Pn ≡ |φ〉〈φ|,

then the quantum probability law is known in the form 〈φ|ρ|φ〉. If also the state is pure
(mathematically also a ray projector) ρ ≡ |ψ〉〈ψ |, then one has the transition-probability
form |〈φ||ψ〉|2. (All this obviously follows from the trace rule.)

Appendix A

We prove now the following auxiliary result that sheds light on assumption (ii).

Lemma A. If ρ and P are a density operator and a projector respectively, then tr(ρP ) = 1 is
equivalent to PρP = ρ .
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Proof. It is obvious (by taking the trace) that the latter relation implies the former. Claim of
the inverse implication is not quite trivial.

Since every density operator is a trace-class operator, it has a finite or countably infinite
discrete positive spectrum {ri : ∀ i} (with possible repetitions in the eigenvalues). Hence, it
can be written in spectral form as

ρ =
∑

i

ri |i〉〈i|, (A.1)

where |i〉 is an eigenvector corresponding to the eigenvalue ri .

The relation tr(ρP ) = 1 implies tr(ρP ⊥) = 0 (P ⊥ ≡ 1 − P). Substituting (A.1)
in the latter relation, one obtains

∑
i ri〈i|P ⊥|i〉 = 0. On account of the positivity ∀ i:

ri > 0, and the easily seen non-negativity ∀ i: 〈i|P ⊥|i〉 � 0, one further has ∀ i: 0 =
〈i|P ⊥|i〉 = ‖P ⊥|i〉‖2, as well as ∀ i: P ⊥|i〉 = 0, and ∀ i : P |i〉 = |i〉. Then, applying
P . . . P to (A.1), one obtains the second relation in Lemma A. �

Appendix B

By definition, linear operators A in a complex separable Hilbert space are Hilbert–Schmidt
ones if tr(A†A) < ∞ (A† being the adjoint of A). The scalar product in the Hilbert space HHS

of all linear Hilbert–Schmidt operators is (A,B) ≡ tr(A†B) (cf the definition after theorem
VI.21 and problem VI.48(a) in [20]).

Appendix C

Let H be a separable, complex Hilbert space, and HHS the Hilbert space of all linear Hilbert–
Schmidt operators in it (cf appendix B). Let, further, |ψ〉, and |φ〉 be two arbitrary unit vectors
in H. The square of the distance between them in H is

[dH(|ψ〉, |φ〉)]2 ≡ ‖|ψ〉 − |φ〉‖2 = (〈ψ | − 〈φ|)(|ψ〉 − |φ〉) = 2 − 2 Re(〈φ||ψ〉). (C.1)

It depends on the relative phase between the two vectors.

Definition C. (i) We make the convention that, whenever the distance between two unit vectors
in H is in question, it is understood that the relative phase is chosen so that the distance in
(C.1) is minimal, i.e.

〈φ||ψ〉 � 0. (C.2)

(ii) We use the word ‘closer’ in the sense of ‘not farther’, i.e., as �, and not as <.

Lemma C. Let |ψ〉, |φ〉 and |χ〉 be three arbitrary unit vectors in H. Then, taking the phase
factors of |φ〉 and |χ〉 in accordance with definition C (i), the former is closer than the latter
to the state vector |ψ〉 in H, if and only if the corresponding pure state |φ〉〈φ| is closer than
|χ〉〈χ | to |ψ〉〈ψ | in HHS. In other words, closer in H (observing definition C (i)) is the case
if and only if it is true for the corresponding ray projectors in HHS .

Proof. In view of (C.1) and definition C (i), |φ〉 is closer to |ψ〉 than |χ〉 is to |ψ〉 if and only
if

(2 − 2|〈φ||ψ〉|) � (2 − 2|〈χ ||ψ〉|) ⇔ |〈φ||ψ〉| � |〈χ ||ψ〉|. (C.3)
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On the other hand, one has
[
dHHS

(|ψ〉〈ψ |, |φ〉〈φ|)]2 = tr[(|ψ〉〈ψ | − |φ〉〈φ|)2] = 2 − 2|〈φ||ψ〉|2. (C.4)

Hence, the pure state |φ〉〈φ| is ‘closer’ to |ψ〉〈ψ | than |χ〉〈χ | is to |ψ〉〈ψ | in HHS if and only
if

|〈φ||ψ〉|2 � |〈χ ||ψ〉|2.
Finally, since an inequality between two non-negative numbers holds true if and only

if the same inequality is valid between their squares, one can see from (C.3) and (C.4) that
lemma C is proved. �

Appendix D

Now we prove (for completeness) a very elementary auxiliary lemma.

Lemma D. Let H and S be a separable (finite or infinite dimensional) complex Hilbert space
and a subspace in it respectively. Let, further, P be the projector onto S. For every element
a ∈ H, there is a unique element b̄ ∈ S that is closest to a among all elements b ∈ H. It is
b̄ ≡ Pa. By this, ‘closest’ is meant in the sense of minimal distance ‖a − b‖.

Proof. For every a ∈ H, and every b ∈ S, one can utilize the orthogonality between the
vectors from the orthocomplement of S and those from S itself:

‖a − b‖2 = ‖(a − Pa) + (Pa − b)‖2 = ‖a − Pa‖2 + ‖Pa − b‖2.

This is minimal with respect to the choice of b ∈ S if and only if b ≡ Pa because whenever
b ∈ S, b �= Pa, ‖Pa − b‖2 > 0. �

References

[1] Gleason A M 1957 J. Math. Mech. 6 885
[2] Hartle J B 1968 Am. J. Phys. 36 704
[3] Farhi E, Goldstone J and Gutmann S 1989 Ann. Phys., NY 192 368
[4] Squires E J 1990 Phys. Lett. A 145 67
[5] Deutsch D 1999 Proc. R. Soc. A 455 3129, also available as (Preprint quant-ph/9906015)
[6] Barnum H, Caves C, Finkelstein J, Fuchs C and Schack R 2000 Proc. R. Soc. A 456 1175, also available as

(Preprint quant-ph/9907024)
[7] Wallace D 2003 Stud. Hist. Phil. Mod. Phys. 34 415, also available as (Preprint quant-ph/0211104)
[8] Forrester A 2006 Decision theory and information propagation in quantum physics Preprint quant-ph/0604133
[9] Saunders S 2004 Proc. R. Soc. A 460 1, also available as (Preprint quant-ph/0211138[2])

[10] Zurek W H 2003 Phys. Rev. Lett. 90 120404, also available as (Preprint quant-ph/0211037)
[11] Zurek W H 2005 Phys. Rev. A 71 052105, also available as (Preprint quant-ph/0405161)
[12] Zurek W H 2003 Rev. Mod. Phys. 75 715, also available as (Preprint quant-ph/0105127)
[13] Zurek W H 2004 Quantum Darwinism and envariance Science and Ultimate Reality: From Quantum to Cosmos

ed J D Barrow, P C W Davies and C H Harper (Cambridge: Cambridge University Press) also available as
(Preprint quant-ph/0308163)

[14] Schlosshauer M and Fine A 2005 Found. Phys. 35 197, also available as (Preprint quant-ph/0312058v3)
[15] Barnum H 2003 No-signalling-based version of Zurek’s derivation of quantum probabilities: a note

on ‘Environment-assisted invariance, entanglement, and probabilities in quantum physics’ Preprint
quant-ph/0312150

[16] Mohrhoff U 2004 Int. J. Quantum Inf. 2 221, also available as (Preprint quant-ph/0401180)
[17] Caves C M Notes on Zurek’s derivation of the quantum probability rule, Web page: http://info.phys.unm.edu/∼

caves/reports/ZurekBornderivation.pdf
[18] Herbut F 2007 J. Phys. A: Math. Theor. 40 5949 An earlier version, which includes a critical review of the

mentioned previous envariance derivations, is available as (Preprint quant-ph/0611220)

http://dx.doi.org/10.1080/09500340500106774
http://dx.doi.org/10.1119/1.1975096
http://dx.doi.org/10.1016/0003-4916(89)90141-3
http://dx.doi.org/10.1016/0375-9601(90)90192-Q
http://dx.doi.org/10.1098/rspa.1999.0443
http://www.arxiv.org/abs/quant-ph/9906015
http://dx.doi.org/10.1098/rspa.1999.0443
http://www.arxiv.org/abs/quant-ph/9907024
http://dx.doi.org/10.1016/S1355-2198(03)00036-4
http://www.arxiv.org/abs/quant-ph/0211104
http://www.arxiv.org/abs/quant-ph/0604133
http://dx.doi.org/10.1016/S1355-2198(03)00036-4
http://www.arxiv.org/abs/quant-ph/0211138[2]
http://dx.doi.org/10.1103/PhysRevLett.90.120404
http://www.arxiv.org/abs/quant-ph/0211037
http://dx.doi.org/10.1103/PhysRevA.71.052105
http://www.arxiv.org/abs/quant-ph/0405161
http://dx.doi.org/10.1103/RevModPhys.75.715
http://www.arxiv.org/abs/quant-ph/0105127
http://www.arxiv.org/abs/quant-ph/0308163
http://dx.doi.org/10.1007/s10701-004-1941-6
http://www.arxiv.org/abs/quant-ph/0312058v3
http://www.arxiv.org/abs/quant-ph/0312150
http://dx.doi.org/10.1142/S0219749904000195
http://www.arxiv.org/abs/quant-ph/0401180
http://info.phys.unm.edu/$sim $caves/reports/ZurekBornderivation.pdf
http://info.phys.unm.edu/$sim $caves/reports/ZurekBornderivation.pdf
http://dx.doi.org/10.1088/1751-8113/40/22/013


Probability from minimal measurement 10555

[19] d’Espagnat B 1976 Conceptual Foundations of Quantum Mechanics 2nd edn (Reading, MA: W. A. Benjamin)
subsection 7.2

[20] Reed M and Simon B 1972 Methods of Modern Mathematical Physics. Functional Analysis vol 1 (New York:
Academic) chapter VI, section 1

[21] Herbut F 1969 Ann. Phys. (N Y) 55 271
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